a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
↳ QTRS
↳ DependencyPairsProof
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
A__AFTER(0, XS) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__AFTER(0, XS) → MARK(XS)
Used ordering: Polynomial interpretation with max and min functions [25]:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
POL(0) = 1
POL(A__AFTER(x1, x2)) = x1 + x2
POL(A__FROM(x1)) = x1
POL(MARK(x1)) = x1
POL(a__after(x1, x2)) = x1 + x2
POL(a__from(x1)) = x1
POL(after(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = max(x1, x2)
POL(from(x1)) = x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
a__after(0, XS) → mark(XS)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(from(X)) → a__from(mark(X))
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → cons(mark(X), from(s(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
MARK(after(X1, X2)) → MARK(X2)
A__FROM(X) → MARK(X)
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(from(X)) → MARK(X)
A__FROM(X) → MARK(X)
Used ordering: Polynomial interpretation with max and min functions [25]:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(from(X)) → A__FROM(mark(X))
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
MARK(after(X1, X2)) → MARK(X2)
POL(0) = 1
POL(A__AFTER(x1, x2)) = x1 + x2
POL(A__FROM(x1)) = 1 + x1
POL(MARK(x1)) = x1
POL(a__after(x1, x2)) = x1 + x2
POL(a__from(x1)) = 1 + x1
POL(after(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = max(x1, x2)
POL(from(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
a__after(0, XS) → mark(XS)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(from(X)) → a__from(mark(X))
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → cons(mark(X), from(s(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
MARK(after(X1, X2)) → MARK(X2)
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(after(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
MARK(after(X1, X2)) → MARK(X2)
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(after(X1, X2)) → A__AFTER(mark(X1), mark(X2))
MARK(after(X1, X2)) → MARK(X1)
MARK(after(X1, X2)) → MARK(X2)
Used ordering: Polynomial interpretation with max and min functions [25]:
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
POL(0) = 0
POL(A__AFTER(x1, x2)) = x1 + x2
POL(MARK(x1)) = x1
POL(a__after(x1, x2)) = 1 + x1 + x2
POL(a__from(x1)) = x1
POL(after(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = max(x1, x2)
POL(from(x1)) = x1
POL(mark(x1)) = x1
POL(s(x1)) = x1
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
a__after(0, XS) → mark(XS)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(from(X)) → a__from(mark(X))
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → cons(mark(X), from(s(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__AFTER(s(N), cons(X, XS)) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
A__AFTER(s(N), cons(X, XS)) → MARK(XS)
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__AFTER(s(N), cons(X, XS)) → A__AFTER(mark(N), mark(XS))
POL(0) = 0
POL(A__AFTER(x1, x2)) = x1
POL(a__after(x1, x2)) = x2
POL(a__from(x1)) = 0
POL(after(x1, x2)) = x2
POL(cons(x1, x2)) = x2
POL(from(x1)) = 0
POL(mark(x1)) = x1
POL(s(x1)) = 1 + x1
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
a__after(0, XS) → mark(XS)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(from(X)) → a__from(mark(X))
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → cons(mark(X), from(s(X)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
a__from(X) → cons(mark(X), from(s(X)))
a__after(0, XS) → mark(XS)
a__after(s(N), cons(X, XS)) → a__after(mark(N), mark(XS))
mark(from(X)) → a__from(mark(X))
mark(after(X1, X2)) → a__after(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__from(X) → from(X)
a__after(X1, X2) → after(X1, X2)